World Health Mall
Bone Support 128oz. by World Health Mall
Bone Support 128oz. by World Health Mall
We believe it is the best answer to leg cramps and bone loss. All Mini-minerals are in the right form and right size for the body plus the body sees this Calcium/Magnesium product as organic. Virtually all similar minerals are in an inorganic form. - - This formula has twice the Magnesium as Calcium and you need only a small amount of mg's to do more than other formulas where 1000mg's are perhaps prescribed by doctors. Usually only ONE TABLESPOON PER DAY IS NEEDED unless there is bone loss. In this situation 3 tablespoons per day just before bed along with a natural Vitamin D3 liquid. Oh ... you might also add some STRONTIUM and COLLAGEN to the mix for extra fast results. Amazingly we have discovered that a large number of people with TMJ experience pain simply due to bone loss of the jaw. This is a formula that people always want to keep on hand and take because it is so effective, tasteless and odorless. It also helps the body alkalize. Havent you noticed more people than ever take calcium supplements while more and more people including those taking the calcium develop osteoporosis? When you go into a Health Food Store or supplement store have you noticed the wide variety of Calcium supplements? Sometimes as many as ten different types of calcium may be available. The reason for all these types is that no one really seems to understand minerals or knows exactly what type the body really wants and needs. Most all of them are combined with something which makes the body not recognize it and much too high of milligrams are needed to try and fool the body into absorbing just a little of it. These compounds are man-made compounds. You notice they all seem to end with ate, citrate, picolinate, Gluconate, etc. The body has to try to break these compounds down to get a little of the mineral to use. After years of study and testing by using all types of calcium and seeing what minerals are in the body and how much we really use each day it was obvious that no one had the perfect minerals so we decided to produce our own. Mini-minerals are not man-made however. We have learned how to grow the minerals in a crystalline form and then we just harvest them. We create the environment, God makes them grow and we just gather them. It is obvious that the best minerals would be extremely small in fact well under a million times smaller than a colloidal mineral, that would be the right size. The mineral would not be a ground-up power of an element but a grown crystal, which is the right form and it would be ionic, meaning it would stay suspended in a water solution. The end results are minerals that are the perfect building blocks of life and they actually have the ability to solve some of lifes problems. The (MINERALS OF LIFE) give people all the trace minerals needed plus a small amount of the major minerals we need. Muscle testing takes on a whole new meaning when you test with these minerals! By combining our Multi-Trace-Mineral product (MINERALS OF LIFE) with our Magnesium/Calcium product (BONE SUPPORT) you will have the correct combination and amounts of the major & trace minerals needed by the body. We produce over 22 individual minerals plus a number of combinations. - These minerals require no digestion or enzyme activity to be absorbed. - Understanding Mini-Minerals - How Much to Take When the recommended milligram system was set up well over a half century ago, the available minerals were not very absorbable so very high milligrams had to be recommended just to get a little to be absorbed. When using complex or colloidal elements, it is estimated that the human biology will be able to breakdown and absorb about 1% or at best maybe 5%. So, if the recommended dose is 2,000mgs daily of a complex element, to derive the approximate need of a mono-atomic element, multiply by 1% probable absorption to get the answer. 2,000 X 1% = 20mg. So, 20mgs of Mini-minerals in the right form & right size may be better than 2,000mg in the wrong form. MISTAKE #1 - We all desire to build the correct kind of bones. So, it is important to use the correct kind of calcium and magnesium. It is possible to build fast bone structure out of the wrong type of calcium and this may cause crumbling of the bone some time later. MISTAKE #2 - Most every company that bottles a calcium/magnesium product makes the same mistake: Twice as much calcium as magnesium! The correct ratio is twice the magnesium as calcium. One of the early symptoms of calcium/magnesium deficiency is leg cramps. This is like the light on the dashboard of your car telling you something is wrong, fix it now! If ignored a person could develop TMJ, loss of bone in the jaw, loss of bone in the spine or lead to bone spurs as the brain dissolves our bones to get calcium to stay alive. The spurs occur when the left over calcium that is unused gets re-deposited on a bone usually where a tendon is attached. CALCIUM/MAGNESIUM INFORMATION Organic calcium is used more than any other mineral in the body. There are 179 different known uses for calcium in the human body: 1) Formation and maintenance of strong bones and teeth 2) Prevents bone loss associated with osteoporosis 3) Control muscle contraction and with magnesium muscle relaxation 4) Required for muscle growth 5) Important in the maintenance of regular heart beat 6) Transmission of nerve impulses 7) Transfer of information between brain cells 8) Controls osmosis and diffusion through the cell membranes 9) Passing of information within the cell. Calcium controls the formation of enzymes and hormones. It is involved in the activation of several enzymes including lipase. CALCIUM IS THE MAIN BUFFER USED TO NEUTRALIZE ACIDS AND TO MAINTAIN THE PROPER Ph throughout the body. Nearly 99% of the bodys calcium is deposited in the bones and teeth. The remaining 1% is present in body fluids, equally divided between diffusible calcium and non-diffusible calcium. The diffusible calcium is bound to blood proteins, chiefly to albumin, although a small amount is bound by the globulins in the blood. Scientists have discovered that the body fluids of healthy people are mildly alkaline (high pH), whereas the body fluids of the sick are acidic (low pH). Calcium is responsible of maintaining the proper body fluid pH. Hypocalcemia, chronic calcium deficiency, is responsible for approximately 150 different degenerative diseases and conditions, and other problems that can be harmful or dangerous to the body. All degenerative diseases, such as diabetes, cancer, heart disease, gallstones, kidney stones, arthritis, osteoporosis, and many more have been scientifically linked to deficiencies in calcium. Calcium protects the bones and teeth from lead by inhibiting absorption of the toxic metal. The following is a partial list of calcium deficiencies. Some of them may be familiar: Arthritis Heart Palpitation Muscle cramps Hypertension Eczema Loss of mental functions Increased cholesterol levels Indigestion Insomnia Rickets Headaches Kidney stones Gall Stones Bone spurs Fibromyalgia Hiatal hernia Recessed gums Low back pain Asthma Allergies Colitis Arrhythmia Heart disease Cancer Acid reflux And about 125 others. It is interesting to note that kidney stones are included. Kidney stones are a buildup of calcium in the kidney. Kidney stones are caused by a lack of calcium in the diet. Due to poor mineral ingestion the body becomes acidic. The body then leaches calcium out of the bones to neutralize the acid and to keep the pH from dropping below the level that supports life. Calcium from the bones is not very bio-available and only a small percentage is actually used to correct the acid situation; the rest starts to accumulate in the kidney, or other places. Scientific evidence has proven that the stones are not formed from organic calcium in the diet by using radioactive markers on the dietary calcium. When the stones were examined there was not one bit of radioactive calcium contained in them. Fully 100% of the kidney stones and bone spurs came from the calcium leached out of the bones in order to neutralize the acids in the body fluids. Female athletes and women experiencing menopause need greater amounts of organic calcium due to lower estrogen levels. The average American diet of meats, refined grains (cereal), and soft drinks (high in phosphorus) has been documented to contribute to increased bone loss in adults. Proper calcium absorption absolutely requires an adequate level of natural vitamin D, through diet or supplementation. Vitamin D controls the absorption of calcium ions. The biochemical absorption and assimilation is not an easy matter. The excretion of calcium is largely through the mucosa of the small intestines, and a comparatively small amount (25-35%) is excreted in the urine as calcium phosphate. Since the excretion is a normal continuous process, a negative calcium balance can result if dietary intake is too low. Acidity, sugars, and artificial flavors and sweeteners can shorten life. It would take 32 glasses of alkaline water at an alkaline pH of 9 to neutralize the acid from one 12 oz. cola or soda. Drinking a cola or soda, the body will use up reserves of its own stored alkaline buffers, mainly calcium from the bones and DNA, to raise the bodys alkalinity levels, especially to maintain proper blood alkaline pH levels. Acidic levels cause death, and there are enough acids in one soda to kill if there is no mechanism to neutralize them. Sodas, like water and other liquids, pass through the stomach into the small intestine where it is quickly assimilated into the bloodstream through the openings in the villi in the walls of the intestines. They are also absorbed right through the stomachs lining directly into the blood. Liquids do not stay in the digestive tract like solid foods. All liquids go into the bloodstream, is filtered through the liver and kidneys, and what is not needed is sent to the bladder and urinated out. These liquids come in contact with virtually every cell in the body. When a substance is an acid, there are a large number of positively charged hydrogen ions. These ions are lacking electrons and steal electrons from other atoms in the body which themselves become electrically unstable and seek electrons from other atoms. Acids are free radicals that create a chain reaction of electron stealing. Whenever an electron is torn from an atom a little spark is produced that can damage cell membranes. Its called free radical damage and can be seen under a microscope in live blood cell analysis. If there are not enough ionic minerals in the body, the process cannot stop. Then the supply of available minerals to neutralize the acids will result into a very serious degenerative disease. Every soda one drinks will contribute to this acidity. Even without soda our bodies naturally produce acids. Minerals are needed in our diets in food and supplements to stop the deterioration process. Unfortunately, most of the food we consume no longer contains the minerals that we need. ARE USP SUPPLEMENTS A GOOD SOURCE OF CALCIUM? The vast majority of vitamins and minerals available today are supplied by a few extremely large and powerful chemical companies. The nutrients produced by these companies fall under the labeling of USP, United States Pharmacopoeia. The companies either break the food down and extract each vitamin separately or grind up rock to extract the minerals. Are you taking ground up rocks? Most people are aware of the need for calcium in our diets. When health practitioners recommend that we go to the store and get Tums, Rolaids or Oyster Shell Tablets and take two daily, they are really not aware of how very little of the calcium is bio-available to the cells in our bodies. Minerals are either organic or inorganic. Would you rather get your calcium from concrete or green salad? The body can not get proper nutrition from inorganic minerals. It is designed to get nutrition form living plants. For human consumption, minerals from food are superior to minerals from soil. Calcium is a prime example of how dangerous these minerals can be. Calcium supplements are taken by millions of women. American women take more calcium supplements than anywhere else in the world, yet we have one of the highest rates of osteoporosis. This deadly condition causes holes in the bone that can lead to a crippling fractures and often death. Read the labels of your calcium supplement. Most calcium is sold in the form of calcium carbonate. This is an inorganic form of calcium, typically ground up oyster shells, chalk or extracted from rocks. If the label says Calcium Citrate you think it comes from Oranges NO, its calcium carbonate mixed with Citric Acid! If the label says Calcium Lactate you think it comes from Milk NO, its calcium carbonate mixed with Lactic acid! Studies prove that about 2% of calcium carbonate is absorbed (not assimilated) by the body! Where does the other 98% go? Significant amount of unabsorbed calcium left in the body will interact with other inorganic compounds to form stones. Wrong forms of Calcium cannot be minimally absorbed and assimilated unless other trace minerals are present along with it. Calcium requires boron, chromium, copper, iron, magnesium, manganese, phosphorus, silicon, strontium, and zinc to any absorption. A critical aspect of the transport of minerals into the human body is the necessity of protein chaperones found in all foods. Without a protein chaperone these supplements wander aimlessly within the body settling in places such as the heart, arteries (plaque) and in all other organs. The absorption factor of these chemical isolates is in the area of 5%. Taking USP forms of isolated nutrients is the equivalent to sending your mail without addressing the envelope. The nutrients never get to where they needed to go. Most Mineral Supplements are Industrial Chemicals The following list will describe what many mineral salts/chelates used in supplements actually are and what they are used for when not in supplements: 1. Boric acid is the rock known a sassolite. Used in weatherproofing wood, fireproofing fabrics, and as an insecticide [14[. 2. Calcium ascorbate: is calcium carbonate processed with ascorbic acid and acetone. It is a manufactured product used as a non-food supplement [14]. 3. Calcium Carbonate: is the rock known as limestone or chalk. Used in the manufacture of paint, rubber, plastics, ceramics, putty, polishes, insecticides, and inks. Used as filler for adhesives, matches, pencils, crayons, linoleum, insulating compounds and welding rods. [14]. 4. Calcium Chloride: is calcium carbonate and chlorine and is the product of the Solvay ammonia-soda process. It is used for antifreeze, refrigeration, and fire extinguisher fluids. It is also used to preserve wood and stone. Other uses include cement, coagulant in rubber manufacturing, and dust control of unpaved roads, freeze proofing coal and increasing traction in tires. [14]. 5. Calcium citrate: is calcium carbonate processed with lactic and citric acids. It is used to alter the baking properties of flour [14]. 6. Calcium gluconate: is calcium carbonate processed with gluconic acid (which is used in cleaning compounds). It is used in sewage purification and to prevent coffee powders from caking [14]. 7. Calcium glycerophosphate: is calcium carbonate processed with di-alpha-glycerophosphates. It is used in dentifrices, baking powder, and as a food stabilizer [14]. 8. Calcium hydroxyapatite: is crushed bone and bone marrow, It is used as a fertilizer [15]. 9. Calcium iodide: is calcium carbonate processed with iodine. It is an expectorant [14]. 10. Calcium lactate: is calcium carbonate processed with lactic acid. It is used as a dentifrice and as a preservative [14]. 11. Calcium oxide: is basically burnt calcium carbonate. It is used in bricks, plaster, mortar, stucco, and other building materials. It is also used in insecticides and fungicides. 12. Calcium phosphate, tribasic: is the rock known as oxydapatit or bone ash. It is used in the manufacture of fertilizers, milk glass, polishing powders, porcelain, pottery and enamels [14]. 13. Calcium chloride: is a preparation of hex hydrates. It is used as a corrosion inhibitor and waterproofing agent [14]. 14. Chromium picolinate: is chromium III processed with picolinic acid. Picolinic acid is used in herbicides [14]. Chelated Minerals Chelated minerals, as a rule, are generally crushed biological industrial rocks processed with one or more acids. The biggest difference in minerals now compared to 45 years ago is that some companies have decided to industrially produce human made versions of minerals attached to peptides. It does not appear that any of the minerals marketed as chelated are food concentrates (though there are foods which naturally contain chelated minerals, but these are normally marketed as food minerals. Industrial manufactured chelates are not natural food. It is a well known among nutrition researchers that most essential minerals are not well absorbed (some are less than 1%). Bioavailability or orally administered vitamins, minerals, and trace elements is subject to a complex set of influences. Is Dairy a good source of Calcium? Calcium from milk and milk products is absorbed at a higher percentage rate than calcium from inorganic supplements because of the cofactors found in the milk. However, the high animal protein content, fat, pesticides, and bovine growth hormones in the milk make it less than desirable to consume. In fact since milk is a protein food it may actually cause more calcium to leave the body than it keeps. Who gets bone disease? Nations with the highest rates of bone disease also have the highest milk consumption rates. The highest rates of osteoporosis are to be found in Denmark, Holland, Norway and Sweden. Evidence is prevalent worldwide. In Africa, Masai tribesman consume large amounts of calcium from the milk of their cattle. In rural Africa the agrigarians maintain good bones on less than 400 milligrams of calcium per day. We are encouraged to consume 1000 milligrams per day of calcium, yet Inuit Eskimos consume 3500 milligrams of calcium each day, and by age 40 are bone crippled. THE KEY TO OSTEOPOROSIS: Its not how much calcium you eat. Its how much calcium you prevent from leaving your bones. Why does Calcium Leave Bones? There are 28 amino acids in nature. The human body can manufacture 19 of them. The other 9 are called essential. We must get them from the foods we eat. One of the essential aminos is methionine, which is C-5, H-11, NO, S One needs Methionine for many human metabolic functions including digestion, detoxification of heavy metals, and muscle metabolism. However, an excess of methionine can be toxic. Eating foods containing too much methionine will cause the blood to become acidic. The body then leaches calcium out of the bones to neutralize the acid. According to Dr. Sellmeyer, Sulfur containing-amino acids in protein-containing foods are metabolized to sulfuric acid. Animal foods provide predominantly acid precursors. Acidosis stimulates osteoclastic activity and inhibits osteoblast activity. Dietary protein increases production of acid in the blood which can be neutralized by calcium mobilized from the skeleton. American Journal of clinical Nutrition, 1995; 61 (4) Animal proteins contain more methionine than plant proteins. In 1988, N.A. Breslau and his colleagues identified the relationship between protein rich diets and calcium metabolism, noting that protein caused calcium loss. His work was published in the Journal of Clinical Endocrinology (1988;66:140-6) Even when eating 1,400 mg of calcium daily, one can lose up to 4% of his or her bone mass each year while consuming a high protein diet. American Journal of Clinical Nutrition 1979; 32 (4) Increasing ones protein intake by 100% may cause calcium loss to double. Journal of Nutrition, 1981; 111 (3) Consumption of dairy products, particularly at age 20 years were associated with an increased risk of hip fractures metabolism of dietary protein causes increased urinary excretion of calcium. American Journal of Epidemiology 1994;139. Common knowledge of osteoporosis is based upon false assumptions. American women have been drinking an average of two (2) pounds of milk or eating the equivalent milk in dairy products per day for their entire lives. Doctors recommend calcium intake for increasing and maintaining bone strength and bone density which they call bone mass. According to this regimen recommended by doctors and milk executives, womens bone mass should approach that of prehistoric dinosaurs. This line of reasoning should be equally extinct. Twenty-five million American women have osteoporosis. Drinking milk does not prevent osteoporosis. Milk contains calcium. Bones contain calcium, too. When we are advised to add calcium to our diets we tend to drink milk or eat dairy foods. In order to absorb calcium, the body needs comparable amounts of another mineral element, magnesium. Milk and dairy products contain only small amounts of magnesium. Without the presence of magnesium, the body only absorbs 25 percent of the available dairy calcium content. The remainder of the calcium spells trouble. Without magnesium, excess calcium is utilized by the body in injurious ways. The body uses the calcium to build the mortar on arterial walls which becomes atherosclerotic plaques. Excess calcium is diverted by the kidneys into painful kidney stones, blocking our urinary tracts. Excess calcium contributes to arthritis; painful calcium buildup often is manifested as gout. The USDA has formulated a chart of recommended daily intakes of vitamins and minerals. The term that FDA uses is Recommended Daily Allowance (RDA). The RDA for calcium is 1500 mg. The RDA for magnesium is 750 mg. Society stresses the importance of calcium, but rarely magnesium. Yet, magnesium is vital to enzymatic activity. In addition to insuring proper absorption of calcium, magnesium is critical to proper neural and muscular function and to maintaining proper pH balance in the body. Magnesium, along with vitamin b6 (pyridoxine), helps to dissolve calcium phosphate stones which often accumulate from excess dairy intake. Osteoporosis is NOT a problem that should be associated with lack of calcium intake. Osteoporosis results from calcium loss. The massive amounts of protein in milk result in a 50% loss of calcium in the urine. In other words, by doubling your protein intake there will be a loss of 1 1.5 in skeletal mass per year in postmenopausal women. If a post menopausal woman loses 1 1.5% bone mass per year, what will be the effect after 20 years? When osteoporosis occurs levels of calcium (being excreted from the bones) in the blood are high. Milk only adds to these high levels of calcium which is excreted or used by the body to add damaging atherosclerosis, gout, kidney stones, etc. Milk Consumption Does not Prevent Hip Fractures A publication in the February, 2003 issue of the American Journal of Clinical Nutrition (Vol. 77, No. 2, 504-511) clearly demonstrates that eighteen years of milk consumption did not prevent hip fractures for post-menopausal women. 72,737 subjects participated in the study. As part of Walter Willetts Harvard Nurses Study, investigator Diane Feskanich performed statistical tests of significance for 18 years of data including dietary intake of calcium (dairy and supplements) to determine her findings. The conclusion reached from this analysis is that dietary calcium plays little or no role in preventing bone loss. Drinking milk does not prevent osteoporosis. A total of 603 hip fractures were analyzed. The Harvard Nurses Study previously determined that there is no positive association between teenaged milk consumption and the risk of adult fractures. As a matter of fact, just the opposite was found to be true. Women consuming greater amounts of calcium from dairy foods suffered significantly increased risks of hip fractures. (American Journal of Public Health 1997;87). In light of these findings, the dairy industry milk mustache campaign has proven to be one enormous deception. Bones break because women eating the wrong foods create an acid condition in their own bloodstreams, which must be neutralized by available calcium. The body achieves balance by taking calcium out of its own bones. People eating the greatest amount of animal protein, especially dairy products, are the ones experiencing accelerated rates of bone loss. The same Journal of Clinical Nutrition, (1995; 61,4) confirmed the truth: Dietary protein increases the production of acid in the blood which can be neutralized by calcium mobilized from the skeleton. The American Journal of clinical Nutrition (1979;32,4) reported: Even when eating 1,400 mg of calcium daily, one can lose up to 4% of his or her bone mass each year while consuming a high-protein diet. The Paradox of Coral Calcium Many coral calcium vendors have tried to connect coral calcium to the longevity of Okinawans. The truth is most coral calcium supplements are made directly (uncut) from coral reefs. The only calcium source found in coral reefs is calcium carbonate, the same calcium compound that is easily found in other rocks and limestone, and has been available for commercial use for decades. Not all coral calcium is the same. While any coral calcium from Okinawa can give you some benefits because the chemical analysis is nearly identical to human bone it is still inorganic and not a food. There are some coral calcium, even from Okinawa, that contain harmful materials such as lead, mercury, arsenic and more. The secret of benefits attributed to coral calcium lies in the waters of Okinawa, not the inorganic coral reefs that most coral calcium products are made from. It is the algae that grows in the porous coral that produces the highly soluble organic calcium compounds.NOT AVAILABLE FOR FREE SHIPPING.